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a b s t r a c t

A two level control strategy that stabilizes and optimizes the production of an industrial copper solvent
extraction process is presented. The stabilizing layer consists of a multi-input–multi-output controller
or two single-input–single-output controllers with additional four feedforward compensators that regu-
late the flow rates in the copper solvent extraction process. The optimization layer consists of an optimizer
that maximizes the production of the copper solvent extraction process and gives setpoints to the control-
lers at the stabilizing level. The mechanistic plant models, verified with industrial data, are linearized by
identifying first and higher order transfer function models from simulated PRBS data. On the basis of the
linear models, the interactions of the controlled variables, and the pairing of the controlled and manipu-
lated variables are studied and the optimizer and the controllers designed. The control strategy employing
two PI-control loops or a model predictive controller and additionally four feedforward control loops is
successfully tested against simulated disturbances and setpoint changes. The control strategy is also com-
pared to the data collected from the industrial plant under manual control. With this two level control
strategy the production of the copper solvent extraction process is increased by 3–5% and the process var-
iation is decreased by 70–90% compared to the manual operation of the case industrial plant. The results
gained in simulation environment are successful and encouraging for further testing in an industrial plant.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The copper leaching, solvent extraction and electrowinning (LX/
SX/EW) process is one of the most important methods in the pro-
ll rights reserved.
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duction of copper from low-grade oxidized ore. Research on the
copper LX/SX/EW process to date has focused on the process chem-
icals and equipment, and control of the industrial plants relies on
simple PID control loops and manual tuning. Advanced control of
a solvent extraction plant would make it possible to keep the pro-
cess variables closer to their optimal values, thus increasing the
amount of copper produced, and reducing the amount of chemicals
and energy consumed [1–3].

Very few papers are published on the modelling and control of
industrial copper solvent extraction processes. The steady state of a
copper solvent extraction process can be studied with mass bal-
ance equations and equilibrium diagrams, for example equilat-
eral-triangular diagrams and McCabe–Thiele diagrams. McCabe–
Thiele diagram is widely used in the industry for the plant design
and production optimization [4–6].

A steady state model of an industrial copper solvent extraction
and electrowinning plant was developed by Aminian et al. [7]. The
model for the solvent extraction considers mass transfer of copper
and iron in the mixers. The mixer model is based on mass conser-
vation and it includes both transfer to the interfacial surface of the
phases and the reaction rate over the surface. The equilibrium
curves are experimentally defined. The steady state model of the
electrowinning is based on the basic formulation of electrolysis
reaction. The models were combined to agree with the flow sheet

mailto:Tiina.Komulainen@kongsberg.com
mailto:sirkka-l@ 
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont


Nomenclature

aij,bij, cij parameters of the transfer function model
A,B parameters of extraction equilibrium isotherm
C,D parameters of stripping equilibrium isotherm
c concentration of copper if not otherwise specified (g/l)
c* equilibrium concentration (g/l)
caq copper concentration of aqueous solution (g/l)
corg copper concentration of organic solution (g/l)
f general function
F flow rate (m3/min)
Gp,tot total transfer function of the process
Ki mass transfer coefficient, i = E1,E2,EP,S (1/min)
Mi matrix
N number of samples
P profit function of the optimization problem
ri steady state gain of a transfer function
s Laplace transform variable
t time (min)
V volume (m3)

Vm volume of the mixer (m3)
Vs volume of the settler (m3)
wi steady state gain of a transfer function
Ymeas measured value
Ymodel model prediction
ai extraction/stripping efficiency, i = E1,E2,EP, S
b1; b2 the organic to aqueous flow ratio constraints
ji equilibrium constant, i = E1,E2,EP,S
x frequency (1/rad)
aq aqueous
el electrolyte
max maximum value
min minimum value
opt optimum value
org organic
out out of mixer/unit
outs out of settler
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of the pilot plant consisting of two series extraction units, one
stripping unit and an electrowinning process. The measurements
and steady state model predictions were compared with good
agreement.

The structure of a continuous dynamical model for mixer-set-
tler cascade was summarized by Wilkinson and Ingham [8]. The
model for one extraction step consisted of an ideal mixing model
describing a mixer and a plug flow model describing a settler. The
underlying assumptions were: (1) perfect mixing in the mixer, (2)
equilibrium is immediately achieved in the mixer, (3) the
aqueous and the organic solutions are immiscible, (4) flow rates
for both phases are constant, (5) plug flow separately for both
phases in the settler, (6) no mass transfer in the settler. The
equilibrium was calculated from linear equilibrium curve or by
using Murphree efficiency. The mass transfer coefficient was de-
rived from two film theory using the phase specific film
coefficients.

Ingham et al. [9] suggested modifying the mixing model by add-
ing an entrainment flow to the mixer settler model. If the phase
separation is imperfect, the aqueous flow out of the settler contains
organic droplets and the organic flow out of the settler aqueous
droplets.

Hoh et al. [10] have modeled copper solvent extraction by a
continuous-flow stirred tank reactor model. The model considers
the copper, reagent and hydrogen ion concentrations together with
the flow rates. The mass transfer coefficient is modeled as function
of the aqueous phase hold up, and the equilibrium constant is
determined experimentally. The model fit to the experimental
data, for laboratory system with one extraction step, one washing
step and five stripping steps, was very good.

To date, no advanced control strategies or systems have been
reported in literature or known to be utilized in the plants. The
control of the copper solvent extraction and electrowinning pro-
cesses relies on operators actively manipulating the setpoints for
the basic level controllers. This means that the control loops are
decentralized with manual setpoints for flow rates, levels, motor
speeds, stirring speeds, pumps and valves. Since the process in-
cludes long time delays and complex interactions between the
variables, the optimal performance and productivity of the plant
is seldom achieved [11,1,12].

In this paper, an industrial solvent extraction process is de-
scribed and the mechanistic model (Komulainen et al. [13]) is
briefly reviewed. Then the control strategy is described, and the
optimization and controller design are presented. Finally, the con-
trol results are presented and discussed.
2. Process description

The aim of the copper solvent extraction process is to concen-
trate aqueous copper solution from a few g/l to about 40–50 g/l
and to purify the solution from ferrous, manganese, chloride and
other impurities, which are harmful for the downstream electro-
winning process. This continuous process consists of extraction
and stripping processes, both of which may contain several unit
operations. In the extraction units, copper is transferred from the
mildly acid aqueous leach solution to the organic solution. In the
stripping units, copper is transferred from the organic solution to
the strongly acid aqueous electrolyte solution. In industry, the pro-
cess equipment is solely mixer-settlers. In the mixers, the minor
phase is dispersed to the major phase, and the copper ion transfer
takes place on the droplet interphase between the phases. The dis-
persed phases are separated by gravity in the long and shallow set-
tlers [14,2,15].

Generally, the process has two input flows, the pregnant leach
solution (PLS) and the lean electrolyte (LE), and one recycling flow,
the organic solution. In the extraction units, copper is extracted
from the PLS to the barren organic (BO) solution. In the stripping
units, copper is stripped from the loaded organic solution (LO) to
the lean electrolyte (LE) solution. The result of stripping, i.e., the
rich electrolyte solution (RE), is blended and fed to the electrowin-
ning process, where 99.99% pure copper cathodes are produced. A
flow diagram of the process is shown in Fig. 1.

Typical process instrumentation includes flow rate, tempera-
ture, and level measurements. In addition, on-line measurements
of conductivity in the mixers, pH, and copper and impurities may
be included. The copper and impurity assays, phase ratio, phase
separation time and other diagnostic measurements can be mea-
sured offline in the laboratory.

The main control objectives for the copper solvent extraction
process are to maximize the extracted copper and to provide rich
electrolyte with stable concentration to the electrowinning pro-
cess. To achieve these goals, the throughput has to be maximized
and the disturbances rejected by balancing the flow rates and
adjusting the chemical levels (acidity of aqueous solutions and re-
agent concentration in the organic solution).

In the studied plant, both flow rates and chemical concentra-
tions are currently adjusted manually. Since automatic instrumen-
tation is available only for the flow rates, the control of chemical
concentrations is excluded from this study. The system requires
on-line measurements of the flow rates and the copper
concentrations.



Fig. 1. Flow diagram of the copper solvent extraction process. In the extraction units, copper is extracted from the pregnant leach solution to the organic solution. In the
stripping units, copper is stripped from the loaded organic solution to the electrolyte solution. The resulting rich electrolyte solution is led to the electrowinning process. The
barren organic solution is recycled back to the extraction units.
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3. Model description

3.1. Mechanistic process model

The studied copper solvent extraction process consists of four
units, three for extraction and one for stripping, as presented in
Fig. 2. The inputs of the process are pregnant leach solution series
and parallel flow rates, F(PLSS) and F(PLSP), pregnant leach solu-
tion copper concentration, c(PLS), lean electrolyte flow rate,
F(LE), lean electrolyte copper concentration, c(LE), and the flow
rate of the organic solution, F(LO). The organic solution is recycled
in the process, but the flow rate can be manipulated through the
organic storage tank. The outputs of the process are rich electrolyte
copper concentration, c(RE), and raffinate copper concentrations,
c(RaffS) and c(RaffP). The process states include the concentrations
of the organic solution after each unit operation, and the organic to
aqueous volume ratios. The laboratory measurements of the re-
agent volume percent in the organic solution, vol, the pH level in
the leach solution, PH, and the acidity of the electrolyte solution,
Acid, are used to update the plant specific McCabe–Thiele equilib-
rium isotherm parameters. These offline measured variables vary
very slowly, and, therefore interpolation between the samples is
considered giving accurate enough estimates.

In the control context, the controlled variables (CV) of the pro-
cess are the rich electrolyte copper concentration, c(RE), and the
loaded organic copper concentration, c(LO). The flow rates are
manipulated variables (MV) and the PLS and lean electrolyte cop-
per concentrations are (measured) disturbance variables (DV).
Fig. 2. The case copper solvent extraction process. The output variables are the copper c
copper concentrations of the recycled organic stream, barren organic, c(BO) and loaded
organic, F(LO), and lean electrolyte, F(LE), and the copper concentration of PLS, c(PLS) a
The process variables and indication of the measurement type (on-
line/offline) are presented in Table 1.

In this work, the solvent extraction process is modeled consid-
ering only the mass transfer of copper between organic and aque-
ous phases. Each unit process is modeled as combination of an
ideal mixer and settler with on-line estimated parameters. The
model is described in more detail in Komulainen et al. [13].

The copper transfer is calculated from the ideal mixing equa-
tions, where the equilibrium value c* is determined on the basis
of the incoming flow rates, concentrations, efficiency coefficients
and plant specific McCabe–Thiele diagram. The variables are
marked: flow rates F, the mixing volumes Vmix, organic concentra-
tions corg, aqueous concentrations caq, mass transfer coefficients K,
efficiency parameters a. The mixer are treated as ideal mixers with
adapted parameters K, a, and equilibrium isotherm coefficients, A
and B for extraction, and C and D for stripping. The settler, always
following the mixer, is described by a pure time delay and marked
with ti.

In extraction, copper is transferred from the aqueous leach solu-
tion to the barren organic solution. An extraction unit is modeled
with Eq. (1), where the equilibrium is calculated at each time step
from nonlinear Eq. (2). Each of the three extraction steps can be
formulated as follows:

dcorg
i ðtÞ
dt

¼ Forg
i ðtÞ

Vmix;i
� corg

i�1ðt � ti�1Þ � corg
i ðtÞ

� �
þ Ki corg

i ðtÞ � corg�

i ðtÞ
h i

ð1Þ
corg�

i ðtÞ ¼ gðcorg
i�1ðt � ti�1Þ; caq

i�1ðt � ti�1Þ; Forg
i ðtÞ; F

aq
i ðtÞ;ai;A;BÞ ð2Þ
oncentrations of the raffinates c(RaffP) and c(RaffS), rich electrolyte, c(RE), and the
organic c(LO). The input variables are the flow rates of PLS, F(PLSS) and F(PLSP),

nd lean electrolyte, c(LE).



Table 1
Controlled, manipulated, disturbance and state variables of the industrial copper
solvent extraction process

Classification Variable name Abbreviation Online Offline

Controlled
variables

Rich electrolyte copper
concentration

c(RE) X X

Loaded organic copper
concentration

c(LO) X X

Manipulated
variables

PLS series flow rate F(PLSS) X
PLS parallel flow rate F(PLSP) X
Organic flow rate F(LO) X
Electrolyte flow rate F(LE) X

Disturbance
variables

PLS copper concentration c(PLS) X X
Lean electrolyte copper
concentration

c(LE) X X

Reagent volume percent in
organic solution

Vol X

pH level of the PLS solution PH X
Acidity of electrolyte solution Acid X

State
variables

Partial PLS copper
concentration

c(PLS1) X

Partial organic copper
concentration after E1P step

c(BO1) X

Partial organic copper
concentration after E1S step

c(BO2) X

Raffinate series copper
concentration

c(RaffS) X X

Raffinate parallel copper
concentration

c(RaffP) X X

Barren organic copper
concentration

c(BO) X X

The measurement type, online/offline, is indicated on fourth and fifth column, with
an indication of the online and offline measurements.

½OUT�T ¼
a11e�c11s

b11sþ1
a12e�c12 s

b12sþ1
a13e�c13s

b13sþ1
a14e�c14s

b14sþ1
a15e�c15 s

b15sþ1
a16e�c16 s

b16sþ1
a17e�c17 s

b17sþ1

a21e�c21s

b21sþ1
a22e�c22 s

b22sþ1
a23ðd23sþ1Þe�c23 s

ðb231sþ1Þðb232sþ1Þ
a24e�c24s

b24sþ1
a25e�c25 s

b25sþ1
a26e�c26 s

b26sþ1
a27ð�d27sþ1Þe�c27s

ðb271sþ1Þb272sþ1Þ

2
4

3
5½IN�T ð8Þ

T. Komulainen et al. / Journal of Process Control 19 (2009) 2–15 5
Loaded organic copper concentration, the second controlled
variable, is the time delayed value of the output of the third extrac-
tion Eq. (1). Loaded organic copper concentration is defined as
follows:

cðLOÞðtÞ ¼ corg
3 ðt � t3Þ ð3Þ

In the stripping, copper is transferred from the loaded organic solu-
tion to the lean electrolyte solution resulting in a rich electrolyte
solution. The stripping unit process is modeled with Eq. (4), where
the equilibrium is calculated from linear Eq. (5). The stripping unit
operation is modeled as follows:

dcel
1 ðtÞ
dt

¼ Fel
1 ðtÞ

Vmix4ðtÞ
� cel

0 ðt � t4Þ � cel
1 ðtÞ

� �
þ K4 cel

1 ðtÞ � cel�

1 ðtÞ
h i

ð4Þ

cel�

1 ðtÞ ¼ hðcorg
3 ðt � t3Þ; cel

0 ðtÞ; F
org
4 ðtÞ; F

el
1 ðtÞ;a4; C;DÞ ð5Þ

Rich electrolyte copper concentration, that is the first controlled
variable, is the time delayed value of the output of the stripping
Eq. (4). Rich electrolyte copper concentration is defined as follows:

cðREÞðtÞ ¼ cel
1 ðt � t4Þ ð6Þ

The nonlinear model structure with adaptation in the equilibrium
isotherm and efficiency parameters performed very well in compar-
ison to industrial process data, and therefore was chosen for the
control studies. For the model details, please refer to Komulainen
et al. [13]. The model was simulated in Matlab, using the ode15s
stiff solver for integration.
3.2. Linear model identification

In order to develop linear controllers for the process, the mildly
nonlinear mechanistic model was first linearized to first and higher
order plus time delay transfer function model and to linear state
space model form. The output variables are rich electrolyte, loaded
organic copper concentrations, c(RE) and c(LO) (see Table 1). The
input variables are the flow rates of the PLS series, PLS parallel, or-
ganic and electrolyte, F(PLSS), F(PLSP), F(LO) and F(LE), the copper
concentrations of PLS and lean electrolyte, c(PLS) and c(LE), and the
reagent volume percent in the organic solution, vol. The input var-
iable vector [F(PLSS) F(PLSP) F(LO) F(LE) c(PLS) c(LE) vol ] is re-
ferred as [IN] and the output vector [c(LO) c(RE)] is referred as
[OUT] in this paper.

The state space model for the outputs, the loaded organic and
rich electrolyte copper concentrations, c(LO) and c(RE), is defined
as follows:

½ _x� ¼ M1½x� þM2½IN�T

½OUT�T ¼ M3½x� þM4½IN�T
ð7Þ

where the number (n) of states x determines the order of the coef-
ficient matrices M1 2 Rn�n; M1 2 Rn�7; M1 2 R2�n . The matrix M4

in this case is [0] since there are no direct effects from the inputs
to the outputs.

In the transfer function model most of the submodels are first
order plus time delay form. The more complex dynamics are mod-
eled as second order with zero plus time delay. The transfer func-
tion models for the outputs, the loaded organic and the rich
electrolyte copper concentrations are of the following form:
The state space model matrices and transfer function model
parameters were identified from the simulated pseudo-random
binary sequence data using Matlab system identification toolbox
(for the N4SID identification algorithm, see Ljung [16]). Next, the
models were validated by applying the inputs of the
validation data sets to the linear models and comparing the
linear model outputs to the outputs of the validation data
sets.

The model performances are compared to each other with the
fitness index. The fitness index is the percentage of the output vari-
ations that is reproduced by the model, the higher the percentage
is, the better the fit. (Matlab system identification toolbox Ljung
[16]).

fit ¼ 1� normðYmeas � YmodelÞ
normðYmeas � �YmeasÞ

� �
� 100% ð9Þ

where Ymeas is the measured value, �Ymeas is the average value of the
measured outputs, Ymodel is the model value. The fit index values are
between �100% and 100%, where 100% represents perfect fit.

The linear models were validated against three different data
sets, one input step change response data set, one simulated data
set, and one industrial data set. The fit indices are presented in Ta-
ble 2, and visual comparison for the rich electrolyte copper concen-
tration in Fig. 3. The model linearization was successful with both
model structures, the best fit indices were for the transfer function
models and state space models of 8th- and 10th-order. The transfer
function and the eight order state space models are used in the fur-
ther control studies.



Fig. 3. Rich electrolyte copper concentration; measurement of the first industrial data set (solid), mechanistic model (dashed), transfer function model (dotted), and eight
order state space model (dash dotted).

Table 2
Model fits to the rich electrolyte (c(RE)) and loaded organic (c(LO)) copper concentration responses to the 5% input steps (Valid 1) at the first operating point, to mechanistic
model outputs (Valid 2) with the inputs of the first industrial data set, and to the first industrial data set (Valid 3)

Model structure Valid 1 c(RE) Valid 2 c(RE) Valid 3 c(RE) Valid 1 c(LO) Valid 2 c(LO) Valid 3 c(LO)

Transfer function (Eq. (10)) 89.64 79.34 27.19 93.82 39.23 4.837
State space 2nd-order 67.51 69.7 20.36 60.01 31.27 16.05
State space 3rd-order 62.89 57.94 23.33 55.71 30.59 16.22
State space 4th-order 59.07 53.23 28.59 51.47 30.6 16.47
State space 5th-order 70.33 70.2 20.35 52.79 30.04 16.77
State space 6th-order 68.17 66.8 25.87 57.84 36.2 15.63
State space 7th-order 87.37 75.35 14.29 67.72 39.72 13.09
State space 8th-order 91.7 72.96 13.21 75.42 41.6 10.24
State space 10th-order 90.9 76.92 16.7 75.43 40.69 10.45
State space 12th-order 90.66 78.03 17.74 73.91 41.69 10.39
State space 14th-order 92.75 75.77 15.97 74.6 41.72 9.783
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For example, compared to the rich electrolyte copper concen-
tration measurements of the first industrial data set (Valid3), the
linear transfer function and eight order state space models follow
well the dynamics of the process, as can be seen from Fig. 3.

4. The proposed control strategy

4.1. Design of the control strategy

A two level control strategy that stabilizes and optimizes an
industrial copper solvent extraction process is developed. The
three level control strategies are illustrated in Fig. 4, where the
two highest levels, optimization level and stabilization level, are
included in this study. The stabilization layer consists of a multi-in-
put multi-output controller or two single-input–single-output con-
trollers with four feedforward compensators that regulate the flow
rates in the copper solvent extraction process. The optimization
layer consists of an optimizer that maximizes the production of
the copper solvent extraction process.

In the optimization layer, the production of the copper solvent
extraction process is maximized on the basis of the linearized, dy-
namic model of the copper solvent extraction process. The optimi-
zation layer provides setpoints for the controlled variables (copper
concentrations) at the stabilizing control level. At the stabilizing
control level the single-input–single-output controllers or alterna-
tively a multi-input–multi-output controller are keeping the con-
trolled variables at the given setpoints by manipulating the flow
rate setpoints. The flow rate setpoints are further given to the basic
level controllers. The stabilizing control level consists of two PI
controllers or a model predictive controller and additionally four
feedforward compensators, which are designed on the basis of
the linearized, dynamic model of the copper solvent extraction
process. At the basic control level, the flow rate controllers (PID
controllers) are manipulating the opening of the control valve by
comparing the difference between the flow rate setpoint and the
flow rate measurement. The measurement information (flow rates,
copper concentrations) is led to the higher control levels.

The controlled variables (CV) are the output of the extraction,
the loaded organic copper concentration (c(LO)), and the output
of stripping, the rich electrolyte copper concentration (c(RE)). The
available manipulated variables (MV) are the flow rates of PLS, or-
ganic and electrolyte, F(PLSS), F(PLSP), F(LO) and F(LE). The mea-
sured disturbance variables (DV) are the PLS and lean electrolyte
concentrations, and the total PLS flow rate, the unmeasured distur-
bance is the change in reagent volume percent in the organic solu-
tion and pH changes in PLS and acidity changes electrolyte
solution. The restrictions are the organic to aqueous ratio, which
is related to phase continuity, pumping capacity, and the organic
level in the tanks.

4.2. Design of the optimization algorithm

The optimization provides setpoints of the controlled variables
for the stabilizing layer controllers, and is the local optimization
level of the proposed control hierarchy. The setpoints of the con-
trolled variables and the optimal values of the manipulated vari-
ables are determined by solving the linear optimization problem
with the linear constraints. The optimal values of the controlled



Fig. 4. Proposed control hierarchy for the copper solvent extraction process. The local optimization layer provides the setpoints of the controlled variables to the supervisory
control level. The supervisory control level is based on single-input–single-output or multi-input–multi-output control strategy. The supervisory control level provides the
setpoints of the manipulated variables to the regulatory control level. The regulatory control level gives signals to the final control elements in the instrumentation level. The
measurement information is led from the instrumentation level to all the upper levels.
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and manipulated variables are calculated on the basis of the values
of the disturbance variables and the optimization parameters.

The maximization of the production, i.e. the copper mass flow
out of the copper solvent extraction process, can be formulated
mathematically as the copper concentration difference between
the rich and lean electrolytes times the electrolyte flow rate, as
follows:

P ¼ ½cðREÞ � cðLEÞ�FðLEÞ ð10Þ

The restrictions of the optimization problem are the aqueous to
organic ratios in the mixers. In the extraction part the mixers are
assumed to run aqueous continuous, i.e. the major phase is aque-
ous, and therefore the organic to aqueous ratio has to be below
b1 (<1). In the stripping part, the mixers are assumed to run organic
continuous with organic to aqueous ratio above b2 (>1). These
restrictions can be formulated for the extraction as follows:

FðLOÞ 6 b1 � FðPLSSÞ FðLOÞ 6 b1 � FðPLSPÞ ð11Þ

and for the stripping as follows:

FðLOÞP b2 � FðLEÞ ð12Þ

The optimization problem can be presented with the controlled,
manipulated and disturbance variables by assuming that the trans-
fer function models of the plant present the steady state of the
process adequately well. Now, the rich electrolyte copper concen-
tration can be presented as
cðREÞ ¼ ½ w1 w2 w3 �w4 w5 w6 w7 �½IN�T ð13Þ

and the loaded organic copper concentration can be expressed as

cðLOÞ ¼ ½ r1 r2 �r3 �r4 r5 r6 r7 �½IN�T ð14Þ

The constants wi and ri are positive, and represent the absolute
values of the steady state gains of the transfer function models for
the loaded organic and rich electrolyte copper concentrations. On
the basis of these equations, the profit function (10) can be
expressed with the manipulated and disturbance variables as
follows:

P ¼ ½ w1 w2 w3 0 w5 �ð1�w6Þ w7 �½IN�T � FðLEÞ �w4FðLEÞ2

ð15Þ

The maximization of this equation requires maximum value for
the organic flow rate, F(LO). The maximum values of the manipu-
lated flow rates can be derived from the restrictions of the optimi-
zation problem. The organic flow rate has a maximum restriction
in relation to the minimum of the PLS flow rates. Since maximum
value for the organic flow rate is desired, Eq. (11) yields:

FðLOÞopt ¼ b1 �minfFðPLSSÞ; FðPLSPÞg ¼ b1 � FðPLSÞmin ð16Þ

where the minimum of the two PLS flow rates, PLSS and PLSP, is
marked as F(PLS)min.

The electrolyte flow rate, F(LE), has an optimum point, which
can be calculated by setting the derivative of the profit function
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(with the optimal organic flow rate) to zero. The derivative is taken
in relation to the electrolyte flow rate. The optimal electrolyte flow
rate is now defined as follows:

FðLEÞopt ¼
1

2w4
w1 w2 b1w3 0 w5 �ð1�w6Þ w7½ �:

FðPLSSÞ FðPLSPÞ FðPLSÞmin FðLEÞ cðPLSÞ cðLEÞ vol
� �T

ð17Þ

This is the optimal value for the electrolyte flow rate if the max-
imum electrolyte flow rate limitation is not exceeded, as required
in Eq. (12). The maximum for the electrolyte flow rate is smaller
than the optimum organic flow rate divided by b2:

FðLEÞoptF ¼minfFðLEÞopt;1=b2 � FðLOÞoptg ð18Þ

Now the setpoints for the rich electrolyte and loaded organic
copper concentration can be formulated on the basis of the opti-
mum manipulated variables, the disturbance variables and optimi-
zation parameters as follows:

cREsp ¼ w1 w2 �b1w3 �w4 w5 w6 w7½ ��
FðPLSSÞ FðPLSPÞ FðPLSÞmin FðLEÞoptF cðPLSÞ cðLEÞ vol
� �T

ð19Þ
cLOsp ¼ r1 r2 �b1r3 �r4 r5 r6 r7½ �:

FðPLSSÞ FðPLSPÞ FðPLSÞmin FðLEÞoptF cðPLSÞ cðLEÞ vol
� �T

ð20Þ

The maximal production can be calculated by substituting Eqs.
(16) and (18) to Eq. (10) as follows:
P ¼ w1 w2 b1w3 �w4 w5 �ð1�w6Þ w7½ ��
FðPLSSÞ FðPLSpÞ FðPLSÞmin FðLEÞoptF cðPLSÞ cðLEÞ vol
� �T � FðLEÞoptF ð21Þ
4.3. Design of the siso and mimo controllers

The pairing of the controlled (loaded organic and rich electro-
lyte copper concentrations) and manipulated (PLS series and paral-
lel, organic and electrolyte flow rates) variables was performed
Fig. 5. Control strategy: the loaded organic copper concentration, c(LO), is feedback contr
is feedback controlled (FB2) with electrolyte flow, F(LE). The disturbances are compensate
flow, F(PLSP), with FF2, for PLS copper concentration, c(PLS), with FF3, and lean electrol
with Bristol’s relative gain array analysis [17,18]. The pairing was
first studied with full non-square matrix RGA for both the transfer
function matrices at frequencies x2 [0, 1/5]. For the loaded organic
copper concentration the pairing at lower frequencies (x < 0.1) fa-
vors organic flow rate, F(LO), but in higher frequencies (x > 0.1) the
pairing with PLS series flow rate, F(PLSS) becomes more favourable.
However, the RGA values for the organic flow rate pairing do not
fall below 0, so this pairing is still valid at the frequency range.
For the rich electrolyte copper concentration, the RGA analysis fa-
vors pairing with electrolyte flow rate.

On the basis of the relative gain array analysis of the linearized
dynamic model, favorable pairing of the controlled and manipu-
lated variables for the feedback controllers is loaded organic cop-
per concentration with organic flow rate, c(LO)–F(LO), and rich
electrolyte copper concentration with electrolyte flow rate,
c(RE)–F(LE). The additional manipulated variables, PLS flow rates,
F(PLSS) and F(PLSP), are considered as measured disturbances.
The feedforward compensators (rejecting disturbances) are con-
structed for the PLS series flow rate with organic flow rate,
F(PLSS)–F(LO), the PLS parallel flow rate with organic flow rate,
F(PLSP)–F(LO), the PLS copper concentration with organic flow
rate, c(PLS)–F(LO), and lean electrolyte copper concentration with
electrolyte flow rate, c(LE)–F(LE).

The single-input–single-output control strategy and compara-
ble multi-input–multi-output control strategy are designed on
the basis of the feedback control structure, utilizing the linearized
dynamic model of the copper solvent extraction process. These
strategies are alternatives for the stabilizing control level in the
proposed control hierarchy.
In the single-input–single-output control strategy the first con-
trol loop consists of the loaded organic copper concentration, c(LO),
which is controlled by manipulating the organic flow rate, F(LO).
The second control loop consists of rich electrolyte copper concen-
tration, c(RE), which is kept in setpoint by manipulating electrolyte
olled (FB1) with organic flow F(LO). The rich electrolyte copper concentration, c(RE),
d with feedforward controllers, for PLS series flow, F(PLSS) with FF1, for PLS parallel

yte copper concentration, c(LE) with FF4.
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flow rate, F(LE). For the single–input–single-output strategy, PI
controllers are used.

In the multi-input–multi-output control strategy the model
predictive controller is designed on the basis of the linearized dy-
namic model of the copper solvent extraction process. The two
controlled variables are loaded organic copper concentration,
c(LO), and rich electrolyte copper concentration, c(RE). The manip-
ulated variables are organic flow rate, F(LO), and electrolyte flow
rate, F(LE).

The feedforward controllers are constructed to compensate for
changes of PLS and lean electrolyte concentrations, c(PLS) and
c(LE), and PLS series and parallel flow rates, F(PLSS) and F(PLSP),
as shown in Fig. 5. The feedforward compensators are of the
lead-lag type.

The difference between the single-input–single-output and
multi-input–multi-output control strategies is illustrated in
Fig. 6. The compensation of input concentration disturbances and
set-point tracking of the loaded organic and rich electrolyte con-
centrations is done by changing the organic and electrolyte flow
rates. Change in the flow rates changes organic to aqueous ratio
in mixers and thus changes the output concentration of the pro-
cess. An effective way to compensate concentration disturbances
would be to change the reagent volume percent in the organic
solution, but due to lack of instrumentation and measurements,
this is currently not a realizable approach.
Fig. 6. The single-input–single-output (SISO) and multi-input–multi-output (MIMO) con
and the MIMO strategy utilizes model predictive controller, marked with MPC. The addit
subscript sp.
The two PI-controllers were tuned with the internal model con-
trol (IMC) rules. In order to take into account the effects of the loop
interactions, MIMO Nyquist stability criteria is tested, as suggested
by Skogestad and Postlethwaite [18]. The determinant was calcu-
lated for the transfer function of the system with the controllers,
det(I + Gp(s) Gc(s)), where the time delays were estimated with first
order Padè approximations. The Nyquist plot of the determinant
does not encircle origin, therefore the process with PI controllers
is stable.

The model predictive controller is based on the eight order state
space model (for MPC see for example Maciejowski [19]). The cost
function to be minimized has the following form:

J ¼
Xn2

i¼n1

cyi yrðkþ dþ iÞ—ŷðkþ dþ ijkÞ½ �2 þ
Xnu

j¼1

cujDu2ðk� 1þ jÞ

ð22Þ

where yr is the reference trajectory, ŷ is the output prediction and u
is the input value and k is the present moment and d is the discrete
dead time. The tuning parameters are the following: the prediction
horizon (n2 � n1), the control horizon nu, and the weights cy and cu.
The output weight cy is penalizing the error between the output and
the reference trajectory, and cu is penalizing the changes in the
manipulated variable. The MPC tuning was done by adjusting the
following parameters: prediction horizon (n2 � n1), control horizon
trol strategies. The SISO strategy utilizes two PI controllers marked with PI1 and PI2,
ional feedforward compensators are marked with FF. The setpoints are marked with
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(nu), cost function weights for: controlled variable weights (cy) and
manipulated variable rate weights (cu). Hard constraints were not
assigned. Initial choices for the parameters were the following: pre-
diction horizon was the longest settling time of the manipulated
variable-controlled variable pairs, and the control horizon the larger
than longest dead time of the manipulated variable-controlled var-
iable pairs. The rich electrolyte copper concentration had larger
weight than loaded organic copper concentration to emphasize
the importance of the end product quality. The manipulated vari-
able rate weights were tuned to avoid big changes and oscillating
behavior. The feedforward compensators were lead-lag type, de-
signed by using the transfer function models between the con-
trolled variable-disturbance variable and the controlled variable-
manipulated variable. The time delay parts of the transfer function
models were discarded. The feedforward controllers were added
one by one on the top of the feedback controllers, and the coeffi-
cients were tuned.The controllers were tuned to have the best pos-
sible performance for disturbance rejection and setpoint tracking in
different scenarios. The performances under different scenarios are
compared in the following in Sections 5.1 and 5.2. For further de-
tails on the control strategy and controller tuning, please refer to
Komulainen [20].

5. Control performance

5.1. Control performance for disturbance rejection

The disturbance rejection performances of the following con-
troller combinations were tested and compared: open loop (OL)
with no controllers, both of the two PI controllers (PI), both the
two PI controllers with four feedforward compensators (PI + FF),
model predictive controller (MPC), model predictive controller
with four feedforward compensators (MPC+FF).
Table 3
The integral of absolute error (IAE) for loaded organic copper concentration c(LO) and rich

F(PLSS) F(PLSP) c(PLS) c(LE)

c(LO) OL 66.5 57.7 134.3 57.9
c(LO) PI 9.1 7.8 18.4 4.1
c(LO) PI + FF 4.0 1.9 7.1 2.6
c(LO) MPC 7.2 6.1 14.3 7.1
c(LO) MPC + FF 4.2 2.2 8.0 2.0
c(RE) OL 83.9 72.8 169.7 669.1
C(RE) PI 8.0 6.8 16.0 40.8
C(RE) PI + FF 7.7 5.9 15.4 7.4
C(RE) MPC 2.4 1.9 3.3 28.5
C(RE) MPC + FF 4.9 2.9 6.7 5.5

Fig. 7. Loaded organic copper concentration with +5% change to c(PLS) and F(PLSS), c(PLS
and model predictive controller (MPC).
The testing was done by introducing ±5% changes to the follow-
ing the inputs and input combinations one at the time: PLS series
flow rate F(PLSS), PLS parallel flow rate F(PLSP), PLS copper concen-
tration c(PLS), lean electrolyte copper concentration c(LE), simulta-
neous with different signs for PLS series flow rate and PLS copper
concentration F(PLSS) and c(PLS), simultaneous with same signs
for PLS parallel flow rate and PLS copper concentration F(PLSP)
and c(PLS), simultaneous for PLS copper concentration and electro-
lyte copper concentration c(PLS) and c(LE). The measure to com-
pare the controller combinations was integral of absolute error
(IAE) between the constant setpoints of the controlled variables
and the outputs of the controlled variables under control.

The results with the model predictive controller were better for
disturbance rejection than with PI-controllers for the loaded or-
ganic copper concentration, as can be seen from Table 3. With
the feedforward compensators, PI controllers performed better to
reject the F(PLSS), F(PLSP) and c(PLS) disturbances. All the com-
bined disturbances are rejected more efficiently with MPC than
with PI controllers as shown in Fig. 7.

The disturbance rejection for rich electrolyte copper concentra-
tion is clearly better with MPC than with PI controllers, as pre-
sented in Table 3. Addition of the feedforward controller for lean
electrolyte copper concentration improves the disturbance rejec-
tion characteristics for MPC. The other feedforward compensators
slightly worsen the result for rich electrolyte copper concentration,
but on the other hand the result for loaded organic copper concen-
tration is significantly improved.

5.2. Control performance for setpoint tracking

The setpoint tracking performances of the controller combina-
tions listed in Section 5.1 were tested and compared. The testing
was done by introducing ±5% changes to the setpoints of the
electrolyte copper concentration c(RE) with disturbances

F(PLSS) and c(PLS) F(PLSP) and c(PLS) c(PLS) and c(LE)

200.5 191.7 76.4
27.6 26.2 21.0

9.9 7.1 7.2
21.4 20.4 20.3
11.4 9.1 8.7

253.3 242.1 506.7
24.0 22.8 31.0
22.7 21.1 19.5

5.6 4.9 29.5
11.2 9.5 8.9

) and F(PLSP), and c(PLS) and c(LE), under open loop control (OL), PI controllers (PI),



Table 4
The integral of absolute error (IAE) for loaded organic copper concentration c(LO) and
rich electrolyte copper concentration c(RE) with set point tracking

c(LO) c(RE) c(LO) and c(RE)

c(LO) OL 191.4 0.0 191.4
c(LO) PI 30.8 15.7 30.2
c(LO) MPC 25.7 4.8 29.1
c(RE) OL 0.0 906.0 906.0
C(RE) PI 19.9 64.4 81.5
C(RE) PI + FF 19.9 64.4 81.5
C(RE) MPC 7.7 58.5 58.4
C(RE) MPC + FF 8.1 58.4 58.0

Table 5
The production increase, and variation decrease for rich electrolyte and loaded
organic copper concentration with the control system compared to the manual
control

Production AAE c(RE) AAE c(LO)

PI +4.93% �75.15% �71.09%
PI+FF +4.92% �84.11% �80.43%
MPC +4.93% �81.33% �71.20%
MPC+FF +4.93% �91.75% �73.49%

Fig. 8. Rich electrolyte copper concentration with +5% changes to c(LO) setpoint, c(RE
controllers (PI), and model predictive controller (MPC).

Fig. 9. Copper production: industrial measurement (dotted) a
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controlled variables and their combination: loaded organic copper
concentration c(LO), rich electrolyte copper concentration, c(RE),
simultaneous with same signs for loaded organic copper concen-
tration and rich electrolyte copper concentration c(LO) and c(RE).
The measure to compare the controller combinations was integral
of absolute error (IAE) between the setpoints of the controlled vari-
ables and the outputs of the controlled variables under control.

The results with the model predictive controller were better for
loaded organic copper concentration and rich electrolyte copper
concentration setpoint tracking than with PI-controllers, as can
be seen from Table 4. MPC was able to minimize the control loop
interactions, and the overall performance was better than with PI
controllers. The controller interaction is significantly decreased
with MPC, for example the setpoint tracking of the rich electrolyte
copper concentration c(RE) has value 4.8 with MPC and 15.7 with
PI controllers. Within the MPC structure the rich electrolyte copper
concentration setpoint tracking had higher coefficient than loaded
organic copper concentration, and thus here the loop interaction
plays against the good result for the loaded organic copper concen-
tration. MPC provides better setpoint tracking than PI controllers.
Adaptation to the new loaded organic setpoint is fast with small
overshoot. The simultaneous setpoint change for the both
) setpoint, and simultaneously to both setpoints, under open loop control (OL), PI

nd PI + FF controlled in simulation environment (solid).
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controlled variables results in similar responses between MPC and
PI controller, however, as can be seen from Table 5 and Fig. 13, MPC
is performing slightly better than PI controllers (29.1 and 30.2 cor-
respondingly). Also the effect of the rich electrolyte copper concen-
tration setpoint change is far smaller with model predictive
controller than with PI controllers (IAE 4.8 and 15.7 corres-
pondingly).

5.3. Comparison of the control strategies to the manual control
strategy

In order to verify the benefits of the proposed single-input–sin-
gle-output and multi-input multi-output control strategies, the
performances of the proposed control strategies are compared to
the performance of the manual control strategy of the case copper
solvent extraction plant. The control strategies are compared to
each other by the average copper production and the average abso-
Fig. 10. Copper production: industrial measurement (dotted) a

Fig. 11. Loaded organic copper concentration: industrial measurement (dotted, black), P
(For interpretation of the references to color in this figures legend, the reader is referre
lute error around the setpoints on the basis of the simulated and
measured outputs.

The average production is determined as follows:

prod ¼
XN

i¼1

ðcðREÞðiÞ � cðLEÞðiÞÞ � FðLEÞðiÞð Þ=N ð23Þ

where N is the total number of samples.
The average absolute error between output copper concentra-

tion c and the setpoint Csp is calculated as follows:

AAE ¼
XN

i¼1

jCspðiÞ � cðiÞj=N ð24Þ

The industrial measurements are representing the manual control
strategy. The setpoints for the controlled variables are determined
as one day moving average of the corresponding industrial online
measurement.
nd MPC + FF controlled in simulation environment (solid).

I + FF controlled in simulation environment (solid, blue), and setpoint (red, dashed).
d to the web version of this article.)
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For the single-input–single-output and multi-input–multi-out-
put control strategies, the inputs to the simulator with the
controllers are the industrial measurements and adapted
parameters for equilibrium isotherm and efficiency correction
parameters. The setpoints for the controlled variables are deter-
mined by solving the optimization problem with the offline pro-
cess data.

In the optimization the minimum and maximum flow rates of
the industrial data are considered as additional constraints. Also
the organic to aqueous ratios are determined on the basis of the
maximum value for the extraction and the minimum value for
the stripping from the industrial data.

No assumptions are made of the operation of the electrowin-
ning, but the lean electrolyte copper concentration measurements
are used as such. This assumption might affect the control results
negatively, since the rich electrolyte control loop has to do extra
work to stabilize the disturbances from lean electrolyte copper
concentration.
Fig. 12. Loaded organic copper concentration: industrial measurement (dotted, black)
dashed).

Fig. 13. Rich electrolyte copper concentration: industrial measurement (dotted, black), P
The production increase with the different control strategies
compared to the manual control is presented in Table 5. Compared
to the industrial test data set, the production was increased almost
5% with all the control strategies. The production increase is due to
the efficient optimization and therefore the percentages with all
the control strategies are similar.

For the first data set, the production under the PI controllers
with the feedforward compensator is presented in Fig. 8: rich elec-
trolyte copper concentration with +5% changes to c(LO) setpoint,
c(RE) setpoint, and simultaneously to both setpoints, under open
loop control (OL), PI controllers (PI), and model predictive control-
ler (MPC).

Fig. 9, and under MPC control with the c(LE) feedforward com-
pensator is shown in Fig. 10. The production is clearly higher and
has less variation compared to the manual operating practice.
The visual comparison shows that the model predictive controller
also causes less variation to the production compared to the PI con-
trollers with the feedforward compensators.
, MPC + FF controlled in simulation environment (solid, blue), and setpoint (red,

I + FF controlled in simulation environment (solid, blue), and setpoint (red, dashed).



Fig. 14. Rich electrolyte copper concentration: industrial measurement (dotted, black), MPC + FF controlled in simulation environment (solid, blue), and setpoint (red,
dashed).
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The variation decrease with the different control strategies
compared to the manual control is presented in Table 5. The vari-
ation in the controlled variables is decreased between 70% and
90%. For the rich electrolyte copper concentration the decrease is
up to 90% and for the loaded organic copper concentration up to
80%. The difference between the controllers is mainly due to the
tuning of the controllers. The MPC is tuned to track the rich elec-
trolyte copper concentration better than loaded organic copper
concentration.

The PI controller with the feedforward compensators tracks bet-
ter the setpoint for the loaded organic copper concentration, as
shown in Fig. 11, than the MPC with the feedforward compensator,
as presented in Fig. 12. The optimization for this data set reduces
the setpoint of the loaded organic copper concentration to lower
level than the measurement, but the flow rate is higher and thus,
more copper is transferred from pregnant leach solution to the or-
ganic solution.

The setpoint tracking for the rich electrolyte copper concentra-
tion is more efficient with the MPC with feedforward compensator,
as shown in Fig. 13, than with the PI controllers with feedforward
compensators, as presented in Fig. 14. The rich electrolyte copper
concentration setpoint is higher than the measurement, but the
flow rate slightly lower.

6. Conclusions

A two level control strategy that stabilizes and optimizes the
production of an industrial copper solvent extraction process was
designed and tested. First, the linear transfer function and state
space models were obtained to follow adequately well the trends
of the industrial data sets. The controlled variable-manipulated
variable pairing was performed using the relative gain array
(RGA). The optimization algorithm was developed on the basis of
the linear process models. Next, the SISO and MIMO controllers
were designed on the basis of the linear process models. Both con-
trol strategies were tested for setpoint tracking and disturbance
rejection with successful results.

The controllers performances were compared to the manual
control practice in simulation environment with the two industrial
data sets. The benefits of the control system were verified by com-
paring the variation of the controlled variables and the produced
copper tons. With PI controllers the variation in the rich electrolyte
copper concentration was decreased by 75–85% and with MPC the
decrease was around 80–90% on average. The copper mass produc-
tion was increased with about 5% with both controllers. The con-
trol results are very encouraging for the further testing of the
control system on the industrial copper solvent extraction plant.
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